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Where the linearized Poisson-Boltzmann cell model fails: The planar case as a prototype study
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The linearized Poisson-Boltzmar®B) approximation is investigated for the classical problem of two
infinite, uniformly charged planes in electrochemical equilibrium with an infinite monovalent salt reservoir. At
the nonlinear level, we obtain an explicit expression of the associated electrostatic contribution to the semi-
grand-canonical potential. The linearized osmotic-pressure difference between the interplane region and the
salt reservoir becomes negative in the low-temperature, large-separation, or high-surface charge limits, in
disagreement with the exa¢at mean-field level nonlinear PB solution. We show that these artifacts—
although thermodynamically consistent with quadratic expansions of the nonlinear functional—can be traced
back to the nonfulfillment of the underlying assumptions of the linearization. Explicit comparison between the
analytical expressions of the exact nonlinear solution and the corresponding linearized equations allows us to
show that the linearized results are asymptotically exact in the weak-coupling and counterionic ideal-gas limits,
but always fail otherwise, predicting negative osmotic-pressure differences. By taking appropriate limits of the
full nonlinear PB solution, we provide asymptotic expressions for the semi-grand-canonical potential and the
osmotic-pressure difference that involve only elementary functions, which cover the complementary region
where the linearized theory breaks down.
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I. INTRODUCTION Ref.[9], and references therein. Even without the inclusion

of effects beyond the mean-field level, several approaches

The mean-field Poisson-Boltzmar(®B) approximation —based on approximations that involve some kind of lineariza-
[1-5l—commonly used to describe agueous suspensions dipn claim to theoretically explain this puzzling physical phe-

mesoscopic charged objects: membranes, clay pIateIetE?m%non[ltg]‘ Th;set_lineaiiﬁetdt{]esuIés hav% peetntslrlitt.icized
polyelectrolytes, colloids, etc.—is known to yield incorrect ased on the indications that thé observed instabiliies are

results at the strong electrostatic coupling limit of low tem_artlfacts due to the linearization, these being drastically sup-

. . ressed when nonlinearities are reintroduced in the theory by
peratures, high surfaces charges, or in the presence of mulf

lent tori Wi ail that in th il fe use of renormalized charggkl]. Furthermore, the lin-
valent counterions. We can fairly say that in theé special g€xarization of the mean-field PB density functional for

ometry of two parallel, infinite charged walls separated by Anigner-Seitz cells yields artifact§12,13 in the strong-
simple electrolyte, the failures of the PB approach are We'l:oupling (low-temperature or high-surface chargand
known from comparison to extensive Monte Carlo simula-infinjte-dilution (of polyions limits for the Donnan equilib-
tions[6] of the primitive mode(7] (PM), where the molecu-  yjym problem [14-18, which describes a suspension of
lar nature of the solvent is neglected and the short-rangegharged objects in electrochemical equilibrium with an infi-
ion-ion interactions are taken as being of the hard-sphergite salt reservoir. In these limits the linearized osmotic-
type. These numerical studies show the existence of an apressure difference between the suspension and the salt res-
traction of purely electrostatic nature that is in apparent conervoir becomes negative, in disagreement with the full
tradiction with the naive expectation based on the notion thamonlinear PB result that always displays positive osmotic-
two liked-charged macroscopic objects should repel eacpressure differences. We have shown, for the case of spheri-
other. In fact, the exact solution of the nonlinear mean-fieldcal polyions [9], that the instabilities observed in Refs.
PB equation in planar geometry predicts only repulsive[12,13 are not related to thermodynamic inconsistencies, but
forces between like-charged obje¢tis-3], showing that it are merely due to the application of the linearization scheme
becomes inadequate to describe the attractions observed leyond its range of validity. In fact, the linearized equations
the numerical simulations. Any theoretical explanation ofagree asymptotically with the PB results in the weak-
these electrostatic-induced attractions in the planar geometigoupling (high-temperature or low-surface chargémits.
requires the introduction of effects beyond the mean-fieldHowever, because the nonlinear PB equation is not analyti-
level [8], as discussed later in the concluding remarks. cally solvable in spherical geometry—even in the simplest
Related to the general question of effective attractive insalt-free case, when only neutralizing counterions are present
teractions between like-charged mesoscopic objects, there isone must rely on numerical calculations to establish com-
still some controversy about their existence in deionizecparisons between the nonlinear and the linearized equations.
aqueous suspensions of like-charged spherical colloids, This motivated us to consider as a prototype case the
which would be mediated by monovalent counterions—seelassical problem of two uniformly charged infinite planes in
electrochemical equilibrium with an infinite salt reservoir,
where the exact analytical solution of the nonlinear problem
*Corresponding author. Present address: Instituto déicdsi s possible. We should emphasize that our main goal is nei-
Universidade de "3aPaolo, Caixa Postal 66318, 05315-970 SP,ther to solve the nonlinear problem, nor to explain the attrac-
Sa Paolo, Brazil. tion in the planar geometry using the linearized theory, but
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rather to test the range of validity of the linearization. The II. NONLINEAR EQUATIONS

explicit_ analytical comparison between the. exdat -the The system to be considered is comprised of two infinite
mean-field levelfull nonlinear and the approximated linear- ,anar sirfaces a distance 2part, each with surface charge

ized equations allows us to study in detail the breakdown o ensity— oq, whereq>0 is the elementary charge, in elec-
the linearization scheme. Since the linearized PB theory igrochemical equilibrium with an infinite monovalent salt res-
extensively used—not only in the context of the controver-ervoir of bulk salt density,. The microiongpositive coun-

sial gas/liquid-type phase separation in colloidal suspensiongrions and salt ionsare free to move in the region L <x
considered in Ref[9]—its detailed and careful analysis is <L between the two charged surfaces, whemeeasures the
worthwhile. This is especially instructive, because it isdistance from the midplane located>at 0. In the PM it is
known a priori that the mechanisms of attraction in planarimplicitly assumed that the solvent dielectric constant-
geometry cannot be described at the mean-field PB leveMmains the same outside the region containing the salt solu-
hence allowing us to expose the limitations and pitfalls of thellon (|X|>L), so image-charge effects due to dielectric con-
linearization. Additionally, the study of this exactly solvable {rast are absent. At the mean-field level of approximation the
case clarifies the question of the proper definition of the lin1Ons are treated as inhomogeneous ideal gases described by

earized osmotic pressure that was previously considered i€l @verage local number densities(x). We do not dis-

Ref. [13]. We will show that a linearized osmotic-pressure Uin9uish betweeripositive) counterions and positive ions de-

difference that might become negative—in contradiction”ved from the salt dissociation. The total charge number

with the nonlinear theory—is an unavoidable drawback Ofdensity (counterions, salt ions and the negative surface
the linearized theory and just reflects the violation of thecharge on the plangsf the system
underlying physical assumptions of the linearization, namely, p(X)=n,(X)—n_(X)—agd(x+L)—ads(x—L), (1)

that the spatial variations of the electrostatic potential should _ ) _ . o
be sufficiently small. where § is the one-dimensional Dirac delta function, is re-

Moreover, to our knowledge, the explicit calculation of lated to the reduced electrostatic potentigk) =8V (x),

the semi-grand-canonical potential for two uniformly V_VZ'CT satisfieshthe{elxic) Pz(/)iSS.OchetuE.ltiOKﬂzlﬁEX)/ dt;]@: q

charged infinite planes at the nonlinear mean-field PB level, *;" kagl'xgsy t\;wve(irrweerﬁ]_alﬁgneig;/s Thee rr::;r:?iqéhi)nngllineg;

has only been reported in connection to the polyelectrolyteZ . ™8 . 9 )

brush p};oblen{19F]) In that work, however thpe t):1ermod3)//-t sem|-grand-canon|t<):al functiongbr one charged planeer
. SR, ' ; ) nit area is given by9

namical potential also included electrostatic and elastic conL-j ! IS gV ¥l

tributions arising from the polyelectrolyte brushes, and BQ[n.(x)] 1 (v [dyx)]? L

therefore, these need to be subtracted out. The knowledge of A :87T|Bfo X 7ax +i§i 0 dxry(x)
the PB nonlinear thermodynamic potential allows us to de-

rive all thermodynamic properties of the two charged infinite n;(x)

planes problem at the mean-field level. We note that it can X('”[ Ny }_1]' 2

also be extended to curved surfaces by using the Derjaguin
approximation(1,20,21. It is then possible to determine the Where the(mean-field implicit microion chemical potentials
normal forces(per unit are between these surfaces when B =In(n,2) assume ideal gases of uniform densigyfor
their separation distance is much smaller than their curvaturkoth types of ions in the infinite salt reservoir aiid are the
radius. In this work we will present the exact nonlinear semi-thermal de Broglie wavelengths of catiofigicluding the
grand-canonical functional from which we derive approxi- positive counterionsand anions.
mate expressions. These involve only elementary functions The nonlinear equilibrium density profiles are obtained by
and provide excellent approximations to the full nonlinearminimizing the PB semi-grand-canonical functiorid) un-
PB results within the whole range of parameters. We believeler the constraint of overall electroneutrality of the system
that these expressions are useful when treating problems un- Lt sl
der conditions where the effects of microionic correlations lim f dxp(x)=0, 3)
are unimportant, and additionally have planar geometry— 5L—0,Y0
e.g., charged membranes. In fact, the asymptotic expansions
of the full nonlinear PB osmotic-pressure difference, pre4-€»  [8/0n=()][Q/A—pefdxp(x)]=0, where the
sented in Sec. IV, provide higher-order terms and extend pré-2grange multiplier e ensures Eq(3). This yields the
vious calculations by Pincust al.[3,22). Boltzmann-weighted ionic profiles

The remainder _of_the paper is organlzed_ as foIIows._ In N2 (X)=np ex = BueT ¥(X)]. (4)
Sec. Il the model is introduced and the nonlinear equations
are presented in a gauge-invariant form, suitable for a latefhe Lagrange multiplieruy is found by imposing the
comparison with the linearized ones. In Sec. Il the linear-charge-neutrality conditior{3). By inserting g into the
ization of the appropriate semi-grand-canonical functional isBoltzmann-weighted ionic profiles, Eq&l), it is now pos-
performed. In Sec. IV we present explicit analytic compari-sible to writen..(x) in a gauge-invariant form23]—i.e., in
sons between the exact nonlinear and the linearized equa-form that does not depend on a particular choice of the zero
tions of state. In Sec. V we give some concluding remarksof the electrostatic potential, but instead depend only on the
Several technical points are relegated to Appendixes A to Ddifference(y) — ¢(x),
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JnZ+ (2ny)%as a_*n, P gauge-invariant form6) of the nonlinear osmotic-pressure
= e . (5) difference seems to be cumbersome when compared to the
simpler version given by EqA16), it will be useful later, at
the end of Sec. Ill, when establishing a connection between
its quadratic expansion about the average potefyialand
HES linearized counterparf®?2).

*

200

Heren.=ga/L is the average density of counterions in the
interplane regionx| <L, a.=(e* (") and the brackets
denote unweighted averages over the volume available to t
microions, ( X(x))=(1/L) [5dx X(x). In particular, in the
salt-free f,—0) limit, these gauge-invariant forms lead—in
a direct and transparent way—to the vanishing coion profile To obtain the linearized semi-grand-canonical functional
n,(X)EO and to the salt-free equilibrium counterion profile ‘QDH[ni(X)] we truncate the expansion of the PB nonlinear
Ny (x)=nel Mo, . semi-grand-canonical function&[n..(x)], Eq. (2), to sec-
The most commonly used gauffe3] is the one in which  gnd order in the differences. (x) —(n.(x)), where
the charge-neutrality Lagrange multiplier is zeyo,=0, (n.(x))=(1/L)f5dx n.(x) are the(a priori unknown av-
which does not correspond to the gauge in which the elecarage densities. After minimization of the functional
trostatic pc_;tenual at the infinite salt reservoir vanisfi24). Qpu[n-(x)] with respect to the profiles.(x) under the
In Appendix A we use the standard gaygg=0 to treat the  ,yerall electroneutrality constrair8), [ &/ on..(x) [ Qpn/A

nonlinear problgm, where we also give an explicit exp_ression_ peaf dxp(x)]=0, we obtain the self-consistent linearized
for the nonlinear semi-grand-canonical potentidl averaged densitig9]

=0[n.(X)]equi- We should keep in mind, however, that the
fixed-gauge electrostatic potential(x) = y(x) — Bue Will Jn? 24
no longer be gauge invariant: its value at a particular cW=(n®(x))= nC+(22nb) —e
point—let us say, at the midplang,=¢(x=0) or at the
charged surfaceg, = ¢(x=L)—will be determined by im-
posing the overall charge neutralit) in the whole system.
They can no longer be chosen arbitrarily, in contrast to their nO(x)=cBI L+ (X)) F h(x)], (10)
gauge-invariant counterpartg,=#(x=0) or ¥ =(X N -
= L) On the other hand, in the gauge—invariant formulation,where the superscript |n(+l)(x) andc(&) emphasizes the fact
either 45, or Y may be chosen arbitrarily—but not both that the self-consistent averaged densit@swere obtained
simultaneousk-because the difference, — o=~ ¢o  within a linearized approximation. Although similar qua-
must eventually be preserved. . _dratic expansions about the state-independent densftiés
Finally we remark that the nonlinear osmotic-pressure dif\yere already proposed for the planar case by Trizac and
ference between the interplane region and the salt reservaifansen[27], they focused their study on finite-size effects
I1=pAP/(2ny) =[n. (0)+n_(0)—2n,]/(2n,)—given al-  and did not investigate the consequences of the linearization
ternatively by Eq.(A16)—may also be written in a gauge- jn detail. Deserno and von Gberg[13] considered the gen-
invariant form by using Eq<5), erald-dimensional problem in a fixed-gauge formulation, in-
terpreting these self-consistent linearized averaged densities

IIl. LINEARIZED EQUATIONS

)

and the linearized equilibrium density profiles

2 N
M= /(i ta,a_+ 2 e in terms of an optimal linearization point)=nye™ Yon.
Al M| 2ay The linearized expansion densitié®, which correspond
512 2] e=(¥)+vo to the zeroth order Donnan densities, represent the infinite-
+| A /(_ t+a,a_——|———1, (6) temperaturelg=0) limit of the gauge-invariant forms of the
Al M| 2a equilibrium density profile5) and do not coincide with the

. . . exact nonlinear averages
where the two dimensionless distances=«,A and | 9

=k,L are defined in terms of two length scales: the Debye nZ+ (2n0)2 +n
screening length associated with the bulk densityof the c.=(n.(x))= v ot (2p)a @ =N
infinite salt reservoir 2

~JnZ+(2n,)%e%209 + O[(85(x)) ] =,

- ! (11)
P 7 2 ’

* J8wlgn, @

because of the nonvanishing quadratic and higher-order
and the Gouy-Chapmd25,26 length (v=2) contributions of the electrostatic-potential deviations
1 —Tl v
- | @® 8,0 =[(¢) = p(x)]". (12
277'30'

In Appendix B we compare the linearized averagx%?,
which gives the characterist{algebraig¢ decay length of the Egs. (9), with their exact nonlinear counterparts. , Egs.
counterion distributior{for a salt-free systejraround an in- (11). We may anticipate that, as soon as the quadratic mo-
finite charged plane with bare surface chasgélthough the  ment is small{§,(x))<1, the full nonlinear equations will
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be very well described by the linearized ones. Moreover, wenritten in terms of the dimensionless length 1=k k™~
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1

should remark that ensemble invariance will require the in-and recalling that and| were defined after Eq6). With
clusion of quadratic contributions into the self-consistent avthese definitions we obtain the linearized self-energy

eraged densities, leading to the definitionoéﬁ)—see Ap-

pendix D.

Inserting the linearized equilibrium density profil€s)
into the exact Poisson equatiafy(x)/dx?=— 4wl gp(X),
yields the Debye-Hckel-like (DH-like) equation[28—31]

d’p(x) 2
7 = KAL)= ()= m]+ FLO+L)+8(x—L)],
dx
(13
where we introduced the parameter
cP—c® N,
n= (14

cP+c  nZ+(2n,)?

The (effective Debye screening length in the interplane re-

gion ! satisfies

wpy(N,1—©)=2/\? and
1
n= ﬂ()\,|):m,
1
Vi-72 N0

The dimensionless linearized osmotic-pressure difference
Hpy=BAPpy/(2np) = —dwpu(X,1)/dl,

k2=K3(\,1)=V1+[2/(A)]?=

(20)
3 1 1
— 12 2l 1__,2 2012
HDH—k[l-I—n(l 477>k|£(k|)+277(l 277)

><(k|)2[c2(k|)—1]]—1, (22)

may be also obtained by performing a quadratic expansion of
the gauge-invariant form of the nonlinear PB osmotic pres-

Kﬁ sure(6)
k?=4mlg[cV+cP]= = > K2, (15 1 1
1_
g Mpy=k? 1+ 7751(0)“‘552(0)_5772<52(X)>}_1,
showing that screening in the interplane region is enhanced (22

compared to the salt reservoir. The gauge-invariant linearized
electrostatic potential satisfying the DH-like E43) subject

to the charge-neutrality constrai(8) reads

coshkx

1— kL SinhxL )’ (16)

() =(p(x))+ 7

where therth order electrostatic-potential differencék?)
ead

KL

6,(X)=7" (23

coshkx v
sinhxL

In the next section we will investigate the properties of the

with the average electrostatic potential for an arbitrary electinearized osmotic-pressure difference defined by E2$)

trostatic surface potential,_ given by
($p(x))= g+ nrLL(kL), (17)
in terms of the Langevin function

L(X)=cothx— ; (18

The linearized semi-grand-canonical potentiélpy

=Qp[nY(X) Jequi is obtained by inserting the equilibrium

density profiles(10) and the DH-like solution(16) into the
linearized semi-grand-canonical functionflpy[n‘>(x)].

or (22) and compare it with its exact nonlinear counterpart,
Egs.(6) or (A16).

IV. COMPARISON OF THE EXACT NONLINEAR
AND THE LINEARIZED EQUATIONS OF STATE

As already pointed out in the literatur&2,13, the linear-
ized osmotic-pressure differenth, defined by Eqs(21) or
(22) yields artifacts in the low-temperature, large-separation
or high-surface charge limits. In contradiction to the exact
nonlinear result(A16), which predicts that the osmotic-
pressure difference is always positidé;>0, the linearized
versionllpy becomes negative in the above mentioned lim-
its. In an attempt to define the osmotic pressure in a linear-

After performing the integrations, we may cast the dimen-zed framework, Deserno and von ®herg introduced an
sionless excess linearized semi-grand-canonical potential pggditional (alternativé definition I1,, cf. Eq. (43) of Ref.

unit area in the form

Ky

Qpu(A,L
wDH()\’I)EZ_nb ’BL()

A

+2nbL}

2 t 1—!—1 kIL(kl) [+1 19
)\arcanhy—; 5 KIL(KD) | +1, (19

[13], that does not have the shortcoming of displaying any
instabilities in the presence of symmetric electrolytes. On the
other hand, we will show later that the osmotic-pressure defi-
nition that is partially unstable, cf. Eq44) of Ref. [13],
coincides with the linearized versiof21) obtained in the
previous sectionl,=IIpy. The general formulas of Ref.
[13] need to be taken, for the planar cagk=(1), in the
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formal limit of vanishing volume fractiog=a/L — 0—with 5 e s 7? 66
a>0 being some arbitrary length—which yields 1=k 1— Kk (77 —3)k"+ 945(371 =5k’
BP1 2 1 7
Hr—iﬁ;_l K% 1+ 76,(0)+58,(0) | —1 —iiiﬁarf+1&f+5bf—8®k%&+omwﬂ%
2 2
1o 1 7kl -1, (26)
zw(k 1%+ (gmml = @49
772 772 772 2
BP 1 H1=k2[1—gk2|2+ 3—0k4|4— 1—89k6|6+ 1350k8|8
P2 i T p2,2
HZ_ 2nb 1 1_[l 2k Y <52(X)>
1 212 +0O(k¥ lO)}—1, (27)
=Hr——wn{ , +mthM—2> (25)
4 sintf Kl 772 772 772
=k? 1— =K%~ (7= 3)k*+ =(27°—5)k®I°
The simpler formal forms of the two osmotic-pressure defi- 2 [ 6 90(7’ ) 945( 7 )
nitions are in accordance with Eq&3) and (26) of Ref. .
[13]. From them, one can see that the second osmotic- (372—T)kBI8+O(k!910) | — (28)
pressure definition coincides with the linearized osmotic- 9450
pressure differencé21) obtained in the last sectior], S o o
=Ilpy, while the first onell, differs from Eq.(22) by an ~ Counterionic ideal-gas limit:— 0 and finitex
omitted quadratic term. Analogously to the spherical case ) .
[9], the term that distinguishes the two distinct osmotic- T _|_+ i+?\_4 e 1.l
pressure definitions originates from the volume dependence Y 3N 145 8/ 945\ \
of the optimal linearization point l//opt arctanhr;
[=1;] arccostk?, as pointed out by Deserno and von Gioerg + O[(I/)\)“]] -1, (29
From its asymptotic expansions to be given next and its
formal expressiori24), we see thail,, although fully ther- 2 [ 2 A1V 8 ()3
modynamically stable for symmetric electrolytes—related to Hl_ﬂ N ﬁ’L 1_5’L 8/\N] 189\
its positiveness, see E@24)—is inconsistentwith a qua-
dratic expansion of the gauge-invariant nonlinear PB pres- ml
sure (6), because of the omitted last quadratic term of Eq. O] =1, (30
(22). Furthermore, we will show next that the consis-
tent—although partially unstable—linearized osmotic- 2 [ 4 AN/1\2 8 [1\3
pressure differencél, presents indeed a better agreement szﬂ{l_ §+<4—5+ §)(X) — 3_15(X>

with the nonlinear osmotic pressufkin the weak-coupling
and counterionic ideal-gas limits, when the underlying as-
sumptions of the linearization are fulfilled. Therefore, al- +O[(|/)\)4]]—1- (39
though the alternativél, displays the fortuitous advantage
of preservingfor symmetric electrolyteshe positiveness of
the exact nonlinear pressurg its derivation has no justifi-
cation in our approach based on the minimization of the
linearized semi-grand-canonical function&py[n+(x)]. 1 2

. . T 2\
Moreover, the partially unstablH, corresponds indeed to 1‘[:_(_> {1_ — +O[(M1)?]
the negative total derivative of the linearized semi-grand- 211 |
canonical potentiabpy With respect to the planes separation

Gouy-Chapman or high-surface charge linhit>0 and /I
—0

-1+0(1%), (32

[, which we thus believe to be the consistent and correct I 2 . 1 12y21/\ cothy21/\
definition of the osmotic pressure. 155 o Ao N1 s e
Let us now perform an explicit comparison between AZsintf 217\ M 4 sintf y21/x
asymptotic expressions of the nonlinear osmotic pres$lire, + O(M), (33)
and of the two corresponding linearized versidbhsandII,
for the distinct regimes listed below. We should remark that
the asymptotic expressions B provide higher-order terms M= 1 _ cothy2l/ £+O( )
and extend previous calculations by Pinetsl. [3,22], see 2 AZsink22I/0 AZJ21/h A '
Ref. [32]. (34
Weak-coupling or zeroth order Donnahg0) limit: |
—0, A—oo, but finite produci\| Large-separation limitt—oo and finite\
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AM1—2\2) ing, because it is supposed to be valid in the weak-coupling

-2l
M= L 1-8/1-14+ —— (Ig—0) and counterionic ideal-gas limits, but not in the op-
(A +V1+2?)2 V1+2A2 posite, large-separationl{>o¢) or high-surface charge,
Gouy-Chapman(A—0) limits. Therefore, any results ob-
e ? >l tained in a linearized framework outside the weak-coupling
XRe——F— qJFO(' e "), (35 and the counterionic ideal-gas limits should be taken with
(A+ V149 caution.
In order to show the accuracy of the self-consistent lin-
1 |2 4cothl 2(1—3cotifl) earized osmotic-pressure differengy, Eq. (21), and the
Hl_sink?l A2 A4 \612 region where the linearization scheme breaks down, we plot-

ted in Figs. 1 and 2 the locii of constant errors between the

2(8+9\2— 12 cotif I )cothl exact nqnlint_aar P_B osmoti(_:—pressure difference and the cor-
+ 83 responding linearized version, measured by the logarithmic
3\ deviations
-2l
. Z[Hﬁff )] Lo(5), (36) ST p=|InTIpu(\, 1) —INTI(N, D). (39)
We have chosen a logarithmic measure for the deviations
becausdl varies in a range of several orders of magnitude.
2_
IM,= 1 3_ 4 cothl _ 2(1+2)\*-3 cottf1) For small deviations, this definition leads to the relative er-
sinffl1 [ A2 A4 A612 rors
4[1+0(e”?)] 4 (N, D =TI\ D)
- o, (37) Slow~| —fxn | (39

Analogously, we may define the logarithmic deviation from

Looking at Eqs.(34) and (37) one may see why the lin- PB of the linearized semi-grand-canonical potential

earized osmotic-pressure differenidg becomes negative at
the Gouy-Chapman and large-separation limits. In the Gouy-
Chapman limit the leading term is given byl,
=0O(\ %2712 which is negative and overcomes the expo- (40
nentially decayingd(\ ~2e~22"%) contribution. The leading  which is always smaller thadllpy (not shown. Therefore
term of the large-separation limit is given byl, the linearized semi-grand-canonical potenti®) and the
=0O(N*3), which is again negative and overcomes thelinearized osmotic-pressure differen@i) describe well the
exponentially decayin@(\ ~2e~2') contribution. In the full  corresponding nonlinear equations in the limit>1 and|
nonlinear solution, however, all power-law dependencek on <1. Because the nonlinear theory always predicts repulsion,

Swpp=|In[wpu(\ 1) —w(X,*)]=In[w(X,1) —w(\,2)]],

cancel in a nontrivial way, and eventually only an exponenthe attractive osmotic-pressure region—shown in gray in
tially (positive decaying behavior II=0[e ?/(A Figs. 1 and 2—is clearly an artifact of the linearization.
+1+\?)?2 ]is predicted. Note that both linearized versions When plotted on the\/L X («,L) ~* plane, thellp,=0 line
I1, andII, show asymptotic behaviors that disagree stronglyreaches at x,L—0 the asymptotic value é&,=A/L
from the nonlinear osmotic-pressure differente This  =0.123863965- -, which is given by the solution of the
clearly indicates that both linearized osmotic-pressure defitranscendental equation
nitions are meaningless in these limits and so is the positive-
ness ofll; in the presence of symmetric electrolytes. &o \F \/?

We see that in the weak-coupling limit the self-consistent 260+ 7£< & +"32( g_) =1 (42)
linearized osmotic pressuié, and its nonlinear counterpart
IT agree up to th@(1*) terms, confirming the validity of the To obtain the full nonlinear PB osmotic-pressure differ-
linearization when its underlying assumptions are fulfilled.encell, one needs to numerically solve the transcendental
The same occurs for the counterionic ideal-gas limit up toequation(A8) involving elliptic functions or elliptic inte-
the O(l) terms. In both cases the fully staldle has a worse grals. Although the asymptotic expansions of the nonlinear
agreement, one order lower than the partially unstdbje Il represented by Eq$26), (29), (32), and (35 allow an
However, in the large-separation limit, the two linearized andexplicit analytical comparison in the distinct regimes with
the nonlinear expressions disagree even qualitatively: the lirtheir linearized versions, they are not very useful for numeri-
earized asymptotics are power laws lgril;=| % andII,  cal evaluation. In Appendix C we derive extended expan-
«—|~3, whereas the nonlinear is exponentiahd positivé  sions of the nonlinear PB semi-grand-canonical poteatjal
ITce 2", On the other hand, although in the Gouy-ChapmarEq. (A14), and of the PB osmotic-pressure differedtgEq.
limit all asymptotics are algebraic dnin the linearized case (A16), that involve only elementary functions and are suit-
the power laws ardl,;«| ! andII,=—1"2 both in dis- able for numerical implementation. These extend the numeri-
agreement with the nonlinear asymptotlés<| ~2. The fail-  cal accuracy of the above mentioned asymptotic expansions
ure of the linearization scheme should not be at all surprisef the full nonlinearlT and are complementary to the linear-
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V. CONCLUDING REMARKS

The classical problem of two infinite uniformly charged
planes in electrochemical equilibrium with an infinite salt-
reservoir is exactly solved at the mean-field nonlinear level,
as well as by a linearization scheme consistent with quadratic
expansions of the nonlinear semi-grand-canonical functional.
By using gauge-invariant forms of the electrostatic potential,
we have shown that the linearized osmotic pressure corre-
sponds to a quadratic expansion of the corresponding nonlin-

00 05 10 15 20 25 ear version.

» As already pointed out in the literatufé3], it is shown
I=x L : - )
b that the self-consistent linearized osmotic pressure leads to

FIG. 1. Logarithmic deviations from the PB of the different arttlfacts in the Iarge-;eparatlon f"m,d the Gouy—Chapman
asymptotic osmotic-pressure differences. DH represents the Deby&igh-surface charge limits, predicting there negative
Hiickel-like, linearized-functional expansion about the weak-OSMmotic-pressure differences. Although it is possible to de-
coupling limit, GC corresponds to the expansion about the salt-frefine an alternative linearized osmotic pressure that is fully
Gouy-Chapman limit, and LS denotes the large-separation limit exstable(in the presence of symmetric electrolytdmsed on
pansion. The region complementary to LS is split into threethe partial derivative of the linearized semi-grand-canonical
branches. In the gray region the linearized osmotic-pressure diffefpotential with respect to the separation distafid, its sta-
encellp becomes negative. The arrows indicate the direction ofyjlity is shown to be a fortuitous result. In fact explicit com-
decreasing logarithmic deviatiaiil from the PB results: 10 (dot-  parison of the exact nonlinear osmotic pressure and the two
dashed linek 10" (dashed lines 10" (solid lines. For compari-  |inearized versions shows that the linearized self-consistent
son, we also displaydotted lines the linearized results by includ- - qmqtic pressure, though partially unstable, presents a better
ing quadratic contrlbutjons in the expansion densities, as defined bé{greement with the PB results in the weak-coupling and
the linearized pressutdpy, Eq. (D3). counterion ideal-gas limits, where the linearization can be

applied. However, not surprisingly, in the region where the
ized equationsppy, Eq.(19), andIlpy, Eq.(21), providing  linearization breaks down none of both proposed linearized
an excellent approximation in the regions where the linearosmotic pressures give quantitatively correct results.
ization scheme breaks down. In Figs. 1 and 2 we also present To avoid confusion we should stress at this point the ex-
their corresponding logarithmic deviations from the exact PBactness of the PB nonlinear solution at the mean-field level

result, which, similarly to Eq(38), are defined by and discuss its range of validity and limitations. It is known
from numerical simulations of the PW¥] in the planar ge-
Sl gc=|InTIg(N,1) = InTI(A, D], (42)  ometry that sufficiently close and highly charged planes in
the presence of neutralizing counterions attract each other
S s=|InTI s(\,1) = InTI(\, D], (43)  [33], even though for realistic charge densities and monova-

lent ions this is not observed at room temperature. In this

wherellgc andll s, given explicitly in Appendix C, are the case the attraction is prevented by steric repulsions at the
osmotic-pressure differences in the extended Gouy-Chapmainall separations at which it would be observed neglecting
and extended large-separation limits, respectively. the finite ionic size. Because the mean-field PB approxima-
tion always predicts repulsion, theoretical validation for this
attraction (observed in fact at room temperature only for
multivalent iong has to be given beyond the PB level, e.g.,
by bulk counterion correlationg34,35, integral-equations
theories [36,37], charge-correlation-induced attractions
[38,39, charge-fluctuation-induced attractions40—42,
electrolytic depletion-induced attraction§43], discrete
solvent-mediated attractiohd4], field-theory method$§45],
etc.—see also Ref$46-55 for mechanisms of attraction
between like-charged rods. On the other hand, in the strong-
coupling limit the linearization of the WS-cell mean-field PB
equation, as discussed in this work, does predict attraction
without including any microionic correlations. However,
here the mechanism of attraction is related to mathematical
artifacts of the linearization itself and does not correspond to

FIG. 2. Same as in Fig. 1, but plotted using different variables.a real physical effect. The fact that this prediction is in agree-
At kpL—0, thellp,=0 line reaches the asymptotic value defined ment with the theories beyond the mean-field level is purely
by Eq. (41), £{,=A/L=0.123863965-- . Compare with Fig. 1  accidental and is intrinsically connected with the inadequacy
from Ref. [22]. (meaning incorrect applicationof the PB mean-field ap-

2

10

10
A/L
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proach at the same limit. In other words, a qualitatively cor- Using the  mathematical identity d?¢(x)/dx?
rect result(in this example, attractionmay be deceptively =2 d(¢')?/de, it is possible to integrate the nonlinear PB
anticipated in the strong-coupling limit because of the simul-Eq. (A1) exactly,

taneous application of two inadequate approximations,

namely, the mean-field PB equation and its subsequent lin- [qo’(x)]zzxﬁ[Z coshg(x)— 2 coshepg], (A3)
earization.

The application of the linearization scheme to the exactly o de
ol = |

¢(x) \2 coshe— 2 cosheg

X
arcco%sinh%/ sinh(%)} ll/cosﬁ%)

solvable planar case sheds light on its limits of applicability.
Because the mechanisms of attraction in the planar geometry
are already well known, this represents the perfect frame-
work where the linearized theories should be tested. &he F
priori knowledge about the mechanisms of attraction may be _
used to confirm or invalidate predictions of the linearized
approaches. These were mainly applied for deionized aque-

ous suspensions of charged colloids to theoretically explain

the very puzzling—and still controversial—physical phe- (A4)

nomenon of gas/liquid-type phase separation mediated b L . . .
monovalent counterions, see REd]. In this sense, it would \X/hose solution is written in terms of the midplane electro-

be very instructive if these linearized theorig0] would ~ Static potentialpy<0 and F(e|m)=[5d6/ V_l—msﬁi 01s
also be applied to the well-studied planar case. It will not bdhe incomplete elliptic integral of the first kirj§7-60. Ap-
very surprising if eventually they will yield attraction under PYing the boundary condition§\2) yields

the same conditions predicted by the linearization of the PB
equation. However, as discussed above, this spurious attrac- = V2 coshe —2 coshey, (AS5)
tion will have few in common with the real physical mecha-

nism that requiresin the planar casdfinite-size effects and
microionic correlations. Although important for a correct |=
physical description of the attraction in the planar geometry, ¢L /2 coshp— 2 coshe,

the role of the microionic correlations8] are beyond the
.%o . P $o
arcco%smh?/ smh?} ‘1/005&?7)

scope of the current work.
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where we defined the two dimensionless distancesc,A

APPENDIX A: EXACT NONLINEAR SOLUTION andl=«,L, and ¢, <¢y<O0 is the surface electrostatic po-

) ) ) ) tential at the charged planes. Introducing the variable
In this Appendix we review the exact nonlinear PB solu-

tion in the traditional gauge.,=0 and give the explicit o hz@
. ! - . . t=sin , (A7)
expression of the nonlinear semi-grand-canonical potential 2

Q. In the standard gauge.=0 [56] the nonlinear problem N _ _ _
reduces into solving the usual PB equation for two chargedhe two boundary conditions can be combined into the eigen-

infinite planed1,3] value equation
d®e(x) 2
——~=kZsinhe(x)+ —[8(x+L)+ 8(x—L)], _ 1 1
dx? A |Jy1+t=F| arcta _)\\/f T
n.(x)=nye"#%, (A1) 1
° or )\\/EZCS(l\/l-i-tm), (A8)

with the appropriate boundary conditions

where cs@|m)=cn(u|m)/sn(u|m) is the ratio of the cosine-
amplitude and sine-amplitude Jacobi elliptic functi¢b3—
60]. The explicit exact solution of the nonlinear PB problem
the prime(’) denoting differentiation with respect to the ar- can then be written as

gument. The Debye screening Ieng:tl],ﬁ1 associated with the

2
¢'(x=0)=0 and go’(x=IL)=iX, (A2)

bulk densityn, of the infinite salt reservoir and the Gouy- _ . — 1
Chapman length\ were defined in Sec. Il by Eq$7) and ¢(x)=—2arcsinht /- cnf iolx| 1+t 1+t) ] XI=<L.
(8), respectively. (A9)
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It should be remarked that the exact solution to the nonlineamidplane electrostatic potentiaky in the gauge-invariant
PB problem may be cast in several equivalent forms. Verweyormulation, introduced in Eq6),

and Overbeek61], also quoted by Huntdi62], gave an al-
ternative form for the implicit solutioriA4),

BAP 1 d[BQAL)
— onl2 . —(eL—¢0)/2| a2 HE T —+2nb|_
Kp|X|=1+2e~ ?F(arcsine™ (¢~ ¢0)/? g~ 2¢0) 2ny, 2n,, dL A ;
_ ine~ [¢(X)—eoll2| a—2
F(arcsine~[¢09~ #0l2| e~ 2¢0) ] ——dw()\'l)—ZSin e0_, .
=2e ¢ K (e 2%0)—F(arcsine” [¢X~¢0l2|g=2¢0)], B i 2 7

(A10)

_ o Equation(A16) is a mean-field versiof67] of the boundary-
whereK (m) = F (/2| m) is the complete elliptic integral of ~density theorem, which states that the osmotic pressure is
the first klnd[57—6q, Whlle Behrens and Borkovec’s version S|mp|y given by the sum of the microionic densities at the
[63] to the explicit solution(A9) reads midplane(WS cell boundary. This simple relation does not

_ hold beyond the mean-field level because of finite ionic-size
_ 12 2
¢(X)=¢o+2Incde *%ukp|x|/2[e°%0),  (ALD)  offects and the presence of microionic correlations between
where cd@|m) is the cd Jacobi elliptic functiof57—60. particles located in the different semispaces separated by the

However, none of these previous works presented the e){p_ltc:]ptlﬁnel—e;/e? tthoug?_ It ;ttl)” doets ffmn.z clharg%(; p\l;’\:\/ne
plicit expression for the nonlinear PB semi—grand-canonica\"’I the electrolyte confined by reutral midp ane[ ].' €
potential Q=Q[n.. (X) e, Which can be extracted from restrict ourselves, however, to the nonlinear mean-field result

Ref.[19] by neglecting the electrostatic and elastic contribu-(A18). which clearly predicts that the osmotic-pressure dif-
tions arising from the polyelectrolyte brushes. ferencell is always positiveThe osmotic-pressure differ-

The dimensionless excef84] semi-grand-canonical po- ence(Al6), written_in th_e standard gaugee|=_0, is equiya-
tential per unit area lent to the gauge-invariant form presented in the main text,

Eqg. (6). Although Eq.(A16) looks much simpler than Eq.

w(\,])= Ko BO(A,L) +2n,L (A12) (6), it is not suitable for a direct comparison with its linear-
2ny A ' ized counterpart22).
may be evaluated inserting the exact nonlinear solui®)
into the semi-grand-canonical function@) and performing APPENDIX B: EXACT NONLINEAR
the integrations. Using additionally the relations AVERAGED DENSITIES

In this Appendix we will compare the uniform expansion
densities about which the linearization is performed—the
state-independent zeroth order Donnan densitids Egs.
where.,<0 is the reduced electrostatic surface potential af9)—with the exact nonlinear PB averages, Egs.(11).
the charged plane at infinite separation, and the factghat  BY using the definite integrals
<0 and¢..<0, the excess semi-grand-canonical potendial
may be cast, after some tedious algebra, in the @566

2 2
cosh<p,_=1+2t+§, coshpm=1+F, (A13)

fqoo de sinhe

= — /2 coshp —2coshpg,
L4 [tneaey o VZooshe 2 cosres V2 coshe,— 2coshe
\ 1422t (BD)

2 2
w()\,l)=xarccos 1+2t+ ;

1
+4\1+t E arctar(—\/_ m —2tl, (A14) ) dq) COSth
M ¢ \2 coshp—2 coshp,
2 2 1 cosh
w(k,m)=xarccosr€1+ﬁ +4 1—X\/1+)\2 , = (;DO F arcco%sinh%/sinh% 1/cosﬁ%)
0

whereE(¢|m)=[¢d#\1—msir? dis the incomplete elliptic
integral of the second kinf67—6(0 and w(\,) represents
the nonlinear excess self-energy of the system at infinite

-2 coshq;

separation. x E| arccossinh 22 / sinh 2| |1/cosR 22
The osmotic-pressure differenceP between the inter- ! 2 ! 2 2
plane region and the infinite salt reservoir can be written in
terms of the midplane reduced electrostatic potential _ L —
©o—Wwhich (in general does not coincide with the arbitrary coth v2coshe, —2coshq, (B2)
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APPENDIX C: EXTENDED EXPANSIONS
OF THE NONLINEAR SOLUTION

In this Appendix we present extended expansions of the
nonlinear semi-grand-canonical potential and of the nonlin-
ear osmotic-pressure difference that are valid in the region
where the linearization breaks down. We have made exten-
sive use of Refd57—6( throughout this Appendix.

1. Extended Gouy-Chapman limit

Both the counterionic ideal-ga$inite \) as well as the
I=x L Gouy-Chapman (A—0) asymptotics of the nonlinear
b osmotic-pressure difference, Eq29) and(32), respectively,
FIG. 3. Deviations from the PB averaged densities of the stateWere obtained in the small-separatida~0) limit. In fact,
independent zeroth order Donnan densities, which were used &9r any ratio§=X\/I the summation over th/| series for
perform the quadratic expansions of the nonlinear functional. Théhe leading terms up t@(1?) may be performed exactly,
arrows indicate the direction of increasing logarithmic deviationsyielding
sc.. from the PB results: 10° (solid lines, 10~2 (dashed lines
and 10! (dot-dashed linesTo allow a comparison with the region B ( y) 201 3(L+E+EYP)(1+ E2y?) + 2882 |2
where the linearized theory breaks down, we also plotted the locus  *~ || =~ 2 2 2,/2 2,2
(dark gray thick ling where the logarithmic deviation from PB of 3Lt e+ &y ) (1Y)
the linearized osmotic-pressure differencesl¥ =102, In the +o(|4), (C1
light gray region the linearized osmotic-pressure difference be-
comes negativd,l 5<0. Although there is a close connection be-
tween this region and the increase of the deviatidas for high- ~ Wherey=y(¢§) is the solution of the transcendental equation
surface chargeg\<1), for low-surface chargeg\>1) and large
separations |&1), the linearized theory still predicts a negative _
linearized osmotic-pressure differen@epper-right regiojy while ¢ytany=1. (€2
the full nonlinear one vanishes exponentially from positive values.

This general expression yields the leading tebfl ~2) of
it is possible to obtain the exact nonlinear PB averaged derthe counterionic ideal-gasinite A\, wheny— \1/x—0), Eq.
sities (29), as well as the Gouy-Chapmahigh-surface charge,

when\—0, y— m/2), Eq.(32), asymptotics as special cases.

Cs_ +¢w._\/p3
Ny _<e > N

The excess semi-grand-canonical potentiaimay be ob-

2 . . . . .
tained by integration of the osmotic-pressure differente 2

2
+ (e (e e()y+ —
(ee) (e ¥) = =

leading to
2 2 1 1 w(\ |)—2y2 1+In A siny) +1
= -+ — — — I - y = —_— J—
1+2t_)\l I\/1+t E| arcta )\\ﬁ 1+t I A 2
1 _ I 3 5

2 [1+N%(1+1) — 5 coty sm2y+X S5y +00°). (C3
+t—=\/ (B3) y

Al 1+\2%t

While the third and fourth terms are the leading corrections

In Fig. 3 we compare them with the uniform densities aboutdue to the presence of salt, the two first terms can be related

which the linearization is performed, the state-independenfo half of theexact nonlineaHelmholtz free energy of two
zeroth order Donnan densitiéd) charged infinite planes in the presence of neutralizing coun-

terions only(salt-free Gouy-Chapman case
et \/ 2)° 1 2 B4 2
R J— +
Ny NI By pE_ 1 |3X"_f. Zwm)]y
&
by looking at their logarithmic deviations from the corre- (CH

A 4dxlg| L A
sponding exact PB averages

1
1+In(A siny)+ Eln

where y is the solution of the transcendental equation
ytany=L/A.
sc.=Inc.—Inc®. (BS) We define the extended Gouy-Chapman limit by
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truncating the above expansions, neglecting thus higher- 2. Extended large-separation limit

order terms, The large-separation osmotic-pressure asymptotics, Eq.

(35), displays oscillations in the crossovelr~(1) region,
even by taking higher-order terms into account. Because we
want to match the linearized DH-like, the extended Gouy-
Chapman and the large-separation asymptotic expressions at
| \3 the crossover region, we need to find an extended expansion
(—) , (C5 that does not display this shortcoming. In fact the pressure
2y oscillations are avoided if one uses instead the implicit form
I=1(\,m), which is obtained by expanding the eigenvalue

2y?

4
a)GC()\J)El——X 1+In

A
5 siny

1 ) I
=3 coty(sm2 y+y

y\2 equation
HGC()\,I)EZ<I—> -1
[(\,m)=m K(m)—m Flarctarix/\/m)|m], (C7)
3(1+ &+ E2y2) (1+£y?) +28%2 |
16y2(1+ £+ E2y2)(1+ £2y?) 1% in powers of_ (1—m)_Et/(1_+t). Accurate results in the
crossover region, which will cover almost the whole<(\)

(Co) parameter space with logarithmic pressure deviations from
the exact PB within 0.1%, are obtained by truncating the

wherey=y(¢§) is the solution of the transcendental equationexpansions of the elliptic integral$9] up to fourth-order

(C2. aboutm=1,

LSBT . | ! ’[6l |

\/a —n4—§n(1—m)+z(1—m) n4—1—§n(1—m) 1281 M) [6In4—7—3In(1—m)]
+ Te3a(1- m)3[30In4—37-15In(1— m)]+1965608(1—m)4[420In4—533—210Ir(l—m)]
A(1—m) 1 1
—2(1+—)\2)7/2{(1+)\2)3+Z(l—m)(1+)\2)2(3—2)\4)+ﬁ(1—m)2(1+)\2)(15+5)\2—10)\4+6)\6+9)\8)
+ 1551~ m)3(105+ 70N2— 70M*+ 28\ 8+ 66\ 8 — 720 10— 60N 1) | — In(A + Y1+ \2) — ;m[|n(x+\/1+>\?)

2 3

—m/1+>\7]— )[3In()\+\/1+)\2) AVLI+HAZ(3—2\2)]— o )[15In()\+\/1+)\7)

768

35(1—m)*
—AV1+N%(15— 1002+ 8 %) ]— %[msmm VI+A2) = AV1+A%(105— 7002+ 56N*—48\5)].

(C8)

The extended large-separation osmotic-pressure difference 2 2
IT,s=2(1-m)/m is defined implicitly by the above rela- wLS()\,I)EXarccoer 1+ —
tion.

The associated semi-grand-canonical potential is obtained
by truncating the expansion of the asymptotic large-
separation [(—«) excess semi-grand-canonical potential,
evaluated by integration of the osmotic-pressure difference,
2t=—do/dl, (C9

1- —\/1+)\

+4

2 mdu
—E(l—m)l()\,m)—ZJ; M— |(7\ ,LL)
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This final expression can be straightforwardly casted in an 1
explicit form by evaluating integrals of typg'du(1 7= RO
— )™ ¥, [0 g In(1— ) (1— ) p®2, for n=0, ... 4. V1+(M2)%e%
APPENDIX D: ENSEMBLE-INVARIANT el 720012
: - k2= \/el®2()) 4 -
SELF-CONSISTENT LINEARIZED EQUATIONS K \/e [2/\1)] /11— ;72’ ©4

In this Appendix we show that the linearized equations ) S )
that preserve the ensemble invariance do not lead to arfyf® 9iven |_mpI|C|tIy in terms of the quadratic moment of the
improvements in the agreement between the linearized arfefectrostatic potential
nonlinear osmotic pressures in comparison to the linearized 1
versions obtained in Sec. III. _ 20 L ~Ir 2

As discussed in detail in Appendix G of RdB], the (829) 2 K{SLGD +KILLA(KD = 1] (DY)
linearized semi-grand-canonical equations of state may be
renderedensemble invariant—instead of using the state- To compute the ensemble-invariant linearized osmotic-
independent zeroth order Donnan densities’, Egs. pressure differencélpy, Eq. (D3), one needs to take into
(99—one uses the quadratic truncation of the nonlinear averaccount the total derivatives of the parametric forms, Egs.

agesc.. = c?+0[(53(x))], (D4),
2 et (2np)7e 2 d_o,dy o dk o
== 2 ’ (1) ai a dl gy dl gk
an ok
as expansion densities to obtain the linearized semi-grand- P | d(8,()) @
canonical functional. With the inclusion of the quadratic :__2(1_~2)<1+_ 2—)_
state-dependent contributidid,(x)) to the average densi- a 2 dl Jyy
ties, we obtain the ensemble-invariant self-consistent linear- <, s
ized semi-grand-canonical potential and linearized osmotic- L P d{02(x)) | & (06)
pressure difference 2l AR dl ok’
- = Kp IBQDH(AJ—) In accordance to the infinite-separation linearized self-energy
@pH(X, )=2_nb A +2npl obtained in Sec. Ill, the ensemble-invariant version is also
given by @py(\,I —%) =22
B fanfe 1 N 1 ook In Figs. 1 and 2 we compare the two linearized osmotic-
)| & any ; 27 (k1) pressure definition$lpy and Iy, given by Eqgs(21) and
(D3), with the exact nonlinear versiohl, given by Eg.
1 (A16). The dotted lines in Figs. 1 and fuggesta better
+2—;]<52(X)> + agreement between the ensemble-invariant linearized
osmotic-pressure differend&y,, and the full nonlinear coun-
1 5 . terpartlI—in comparison to the linearized versibly,, ob-
Y arctanhy ——+ Z’lkl L(kl) tained in Sec. Ill, which is not ensemble invariant. However,
7 as shown below by explicit analytical comparison, these nu-
1 . A merical evidences are in fact misleading.

+ 7l (kD[ L%(kl)—1]; +I, (D2) Asymptotic analytical expansions of the ensemble-
invariant linearized osmotic-pressure differeridgy about
the weak couplinglg—0

- dapy(N,1) piingle—0)
Hpu(N )=~ —7— 4

dl -
Mpp=Mpu+k?

(7°+5)(1— 7*)k®®+0(k™ 10)}

A 1 1 16200
=k 1+ ;151(0)+§52(0)_ §<52(X)> -1 7 7 7
—k2 1 w22 L  2_ a4y T 2_ 616
) . k41 6kI 90(77 3)k|+945(27; 5)k°l
=k? 1+Za72klﬁ(kl) 5
— 77— 6 4 2_ 818 1011
. 113400 7 7° 287"+ 77 = 84K%I+ O(K™ 0)}
+ = (kD L2(kl)—1]p—1 D
2 (KD?LL2(k) ]] , (D3) 1 o7
where the dimensionless parameters and the counterionic ideal-gak 0, finite A) limits
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show explicitly that both linearized osmotic pressunids,,

andﬁDH, agree with the full nonlinear PB versidh up to
thesame order—cf. Eqs.(26)—(31). Therefore, the numerical

)\4

675

6
Hpp=IIpn+

+0[(|/>\)7]], (D8)

PHYSICAL REVIEW E 68, 066106 (2003

indications of a better agreement Hfy,, as suggested by
Figs. 1 and 2, are purely fortuitous. In fact, for ratidgL
>10? (beyond the values shown in Fig) Bne observes a
crossover between the deviations of the linearized versions,

IMpy and f[DH, with respect to the full nonlinear osmotic-
pressure differencél. These results, however, can only be
verified a posteriori.
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